Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a photoinduced reconfigurable metasurface to enable high spatial resolution terahertz (THz) wave modulation. Conventional photoinduced THz wave modulation uses optically induced conductive patterns on a semiconductor substrate to create programmable passive THz devices. The technique, albeit versatile and straightforward, suffers from limited performance resulting from the severe lateral diffusion of the photogenerated carriers that undermines the spatial resolution and conductivity contrast of the photoinduced conductive patterns. The proposed metasurface overcomes the limitation using a metal-jointed silicon mesa array with subwavelength-scaled dimensions on an insulator substrate. The structure physically restrains the lateral diffusion of the photogenerated carriers while ensuring the electrical conductivity between the silicon mesas , which is essential for THz wave modulation. The metasurface creates high-definition photoconductive patterns with dimensions smaller than the diffusion length of photogenerated carriers. The metasurface provides a modulation depth of −20 to −10 dB for the THz waves between 0.2 to 1.2 THz and supports a THz bandpass filter with a tunable central frequency. The new, to the best of our knowledge, design concept will benefit the implementation of reconfigurable THz devices.more » « less
-
Substrate-integrated waveguides (SIWs) have recently attracted increasing attention for the development of terahertz (THz) circuits and systems. However, conventional SIWs employ fixed metallic vias to form the waveguide sidewalls, resulting in limited tunability and reconfigurability. In this paper, we report a novel approach for the realization of high-performance tunable and/or reconfigurable THz SIW structures. In this approach, photo-induced free carriers are generated in a high-resistivity silicon pillar-array structure to form well-defined, highly conductive, vertical sidewalls. The wave propagation properties of these optically-defined photo-induced SIWs (PI-SIWs) have been evaluated using full-wave electromagnetic simulations. Higher-functionality THz components, including a single-pole double-throw switch and a phase shifter were also designed and simulated. Based on these example circuits, PI-SIWs using pillar-array structures appear to be attractive candidates for the development of tunable and reconfigurable THz components for THz sensing, imaging, and communication systems.more » « less
An official website of the United States government
